Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape

نویسندگان

چکیده

Spatially extensive high-resolution soil moisture mapping is valuable in practical forestry and land management, but challenging. Here we present a novel technique involving use of LIDAR-derived terrain indices machine learning (ML) algorithms capable accurately modeling at 2 m spatial resolution across the entire Swedish forest landscape. We used field data from about 20,000 sites Sweden to train evaluate multiple ML models. The predictor features (variables) included suite generated national LIDAR digital elevation model ancillary environmental features, including surficial geology, climate use, enabling adjustment class maps regional or local conditions. Extreme gradient boosting (XGBoost) provided better performance for 2-class model, manifested by Cohen’s Kappa Matthews Correlation Coefficient (MCC) values 0.69 0.68, respectively, than other tested methods: Artificial Neural Network, Random Forest, Support Vector Machine, Naïve Bayes classification. depth water index, topographic wetness ‘wetland’ categorization derived property were most important predictors all presented enabled generation 3-class with MCC 0.58. In addition classified maps, investigated technique’s potential producing continuous maps. argue that probability pixel being as wet can be 0–100% index (dry wet) moisture, resulting could provide more information management

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resolution soil moisture mapping

Soil moisture information is of critical importance to real-world applications such as agriculture, water resource management, flood, fire and landslide prediction, mobility, soil hydraulic parameter estimation etc. Many of these applications require soil moisture information at high resolution. While this may be estimated from land surface models, the predictions are often poor due to inadequa...

متن کامل

Scale-dependency of LiDAR derived terrain attributes in quantitative soil-landscape modeling: Effects of grid resolution vs. neighborhood extent

Article history: Received 23 May 2013 Received in revised form 20 March 2014 Accepted 22 March 2014 Available online xxxx

متن کامل

the impact of generative learning strategy use on efl learners’ reading achievement and critical thinking

این پژوهش کوشیده است تأثیر به کارگیری راهبردهای زایا را بر پیشرفت و بسندگی در خواندن و درک مطلب و نیز بر تفکر انتقادی زبان آموزان انگلیسی را بررسی کند. در این پژوهش تعداد 46 دانش آموز دختر در مقطع متوسطه اول به صورت تصادفی انتخاب وبه دو گروه تجربی و شاهد با تعداد دانش آموزان مساوی در هر گروه تقسیم شدند. به هر دو گروه سه داستان کوتاه به عنوان موضوع خواندن برای کلاس داده شد. به گروه تجربی درابتدا...

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geoderma

سال: 2021

ISSN: ['0016-7061', '1872-6259']

DOI: https://doi.org/10.1016/j.geoderma.2021.115280